8 research outputs found

    Localization dynamics in a binary two-dimensional cellular automaton: the Diffusion Rule

    Get PDF
    We study a two-dimensional cellular automaton (CA), called Diffusion Rule (DR), which exhibits diffusion-like dynamics of propagating patterns. In computational experiments we discover a wide range of mobile and stationary localizations (gliders, oscillators, glider guns, puffer trains, etc), analyze spatio-temporal dynamics of collisions between localizations, and discuss possible applications in unconventional computing.Comment: Accepted to Journal of Cellular Automat

    Stochastic automated search methods in cellular automata: The discovery of tens of thousands of glider guns

    No full text
    This paper deals with the spontaneous emergence of glider guns in cellular automata. An evolutionary search for glider guns with different parameters is described and other search techniques are also presented to provide a benchmark. We demonstrate the spontaneous emergence of an important number of novel glider guns discovered by an evolutionary algorithm. An automatic process to identify guns leads to a classification of glider guns that takes into account the number of emitted gliders of a specific type. We also show it is possible to discover guns for many other types of gliders. Significantly, all the found automata can be candidate to an automatic search for collision-based universal cellular automata simulating Turing machines in their space-time dynamics using gliders and glider guns. © 2009 Springer Science+Business Media B.V
    corecore